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Fig. 1. A model trained using a great reward function

In this project proposal, our objective is to expand superhuman imitation learning (IL) to bipedal walking, explicitly focusing
on incorporating superhuman autonomy objectives within the imitation learning framework. While imitation learning has been
successfully applied in various fields, such as self-driving cars, surgical procedures, and video games, it primarily aims to mimic
human behavior. However, this approach may not yield optimal outcomes for entities with non-human capabilities, particularly
in low-resource settings. We propose an innovative methodology that utilizes the Minimum Suboptimal Inverse Optimal Control
(MinSub IOC) function to address this limitation. This approach aims to enhance performance beyond the highest level demonstrated
by humans for each component of the cost function. We intend to implement this methodology within the context of the bipedal
walking task in the OpenAI Gym environment, which serves as our testing platform. Given the constraints of a limited dataset in a
low-resource setting, we employ a form of gradual data augmentation to enhance the performance of our system. By applying the
MinSub IOC function and employing gradual data augmentation, we aim to achieve superhuman performance in the bipedal walking
task despite resource limitations. This project proposal seeks to push the boundaries of imitation learning and showcase its potential
for enhancing performance in non-human domains with constrained resources.

Additional Key Words and Phrases: Imitation Learning, Reinforcement Learning, Bipedal Walking, Data Augmentation
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1 INTRODUCTION

Superhuman autonomy refers to the ability of an AI system to perform tasks with a level of autonomy and decision-
making that exceeds human capabilities. This means that the AI system can operate and make decisions independently,
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made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
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redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
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without human intervention or oversight, and achieve superior performance in various domains. This could potentially
revolutionize fields like robotics, transportation, and healthcare.

During our research, we were greatly influenced by the research papers by Dr. Brian D. Ziebart, namely his work in [7],
[14] and [12] which provide essential insights into the fields of AI and machine learning. These works contribute to
developing autonomous systems with superior capabilities, fair decision-making, and accurate modeling of human
behavior.

These papers collectively contribute to advancing AI systems by enhancing their autonomy, modeling human behavior,
and ensuring fairness. Building upon these, our work on "Superhuman Imitation Learning For Low Resource Setting"
aims to explore the application of superhuman imitation learning in scenarios with limited resources using Bipedal
Walker in OpenAI Gym.

We also incorporated Imitation Learning in our methodology. It is a technique by which an agent learns a policy
that tries to mimic the behavior seen in demonstrations [1]. Imitation learning has been successfully used in various
tasks like self driving [2][3], surgery [4], and video games [5][6]. But these methods generally aim to mimic the behavior
of the demonstrations. To improve performance, they try to either curate the data by using only expert demonstrations,
or augment the capabilities of the agent by giving it enhanced sensors compared to humans, like in the driving task [3].

These methods suffer from the disadvantage of purely learning the policy based on human demonstrations. We
argue that the policy learnt by human experts is only optimal for humans, who are beings with limited physical
capabilities, large reaction times, and finite stamina. On the other hand, a non-human entity with superior capabilities
might benefit from trying to learn a policy that can outperform humans instead.

The iterative nature allows continual improvement, exceeding the initial gold standard and achieving superhuman
capabilities. Deploying the algorithm iteratively enables the model to learn from mistakes, discover new strategies, and
enhance performance. Superhuman learning provides an exciting opportunity to surpass gold standard trajectories
and approach true superhuman capabilities. Applying this concept to bipedal walking presents a unique challenge,
combining the complexity of human locomotion with stability issues, making it an exciting domain for superhuman
autonomy exploration.

The method in [7] was originally applied to a relatively simple cursor-pointing task. We decided to use it on Bipedal
Walker, an OpenAI gym game. Bipedal Walker is a classic control problem in robotics and AI, which involves designing
an agent that can control the movement of a bipedal walker, a humanoid robot with two legs. In this environment,
an agent controls a humanoid robot with two legs. The goal is to teach the agent to walk as far as possible while
maintaining balance. The agent receives a reward based on how far the robot walks, with higher rewards for longer
distances. To solve the Bipedal Walker problem, reinforcement learning algorithms can train the agent to make decisions
that maximize the reward signal. This involves designing a policy that maps the current state of the environment to an
action that the agent should take.

Additionally, to overcome the challenges associated with a small dataset, we have incorporated an approach to gradually
2
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augment our dataset. This iterative process involves adding our model to the dataset after each iteration and removing
the worst-performing one. This self-improvement cycle not only conserves data but also fosters continuous learning
and improvement of the model, ensuring that its performance escalates with each iteration.

2 RELATEDWORK

2.1 Imitation learning

The key idea behind imitation learning is that an agent can learn an effective policy by observing and replicating the
actions of expert demonstrators, removing the need to unnecessarily explore the vast search space. There have been a
wide variety of approaches proposed for Imitation Learning over the last several decades, including Behavior Cloning
(BC) [9], Dataset Aggregation (DAgger) [10], and Generative Adversarial Imitation Learning (GAIL) [11].

Behavior Cloning (BC) is a simple yet effective approach that involves learning a policy by directly mapping ob-
served states to actions using supervised learning [9]. BC is prone to compounding errors, especially with small datasets.
The inaccuracies may keep compounding and lead to encountering states not present in the expert demonstrations.

Generative Adversarial Imitation Learning (GAIL) takes a different approach, employing a generative adversarial
network (GAN) framework to learn a policy by matching the distribution of state-action pairs between the expert and
the agent [11]. GAIL has been shown to produce policies that closely resemble expert behavior while requiring fewer
demonstrations compared to other imitation learning methods.

In [7] the authors propose a novel approach to autonomous decision-making. The paper introduces the concept
of subdominance minimization, which optimizes an agent’s behavior to minimize instances of being dominated by
other agents. The agent tries to learn a policy that performs unambiguously better than every human demonstration
according to every feature of the cost function (or at least, it attempts to learn such a policy). They devise a Minimum
Suboptimal Inverse Optimal Control (MinSub IOC) function that attempts to identify the demonstration in each feature
that it least dominates over and then tries to optimize this function. The research demonstrates the effectiveness of this
approach in achieving superhuman performance in various domains, including robotics and game playing.

The research in [14] presents a framework for modeling human behavior using maximum entropy inverse opti-
mal control (MaxEnt IOC). The authors demonstrate how MaxEnt IOC can estimate the underlying decision-making
process of humans by observing their behavior. This approach is based on the idea that human behavior can be modeled
as a rational process of decision-making that seeks to maximize a specific utility function. MaxEnt IOC is a probabilistic
framework that estimates a human’s underlying utility function by observing their behavior in a particular task. The
estimated utility function can then predict their behavior in new situations. The paper demonstrates the MaxEnt IOC
approach’s effectiveness in various domains, including driving behavior and pedestrian navigation.

2.2 Superhuman Imitation Learning

Superhuman autonomy is a recent concept that aims to develop policies for autonomous agents that not only emulate
human behavior, but also unambiguously outperform it in various aspects of a given task [7].

3
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They propose the MinSub IOC function that minimizes the subdominance of the minimum cost trajectory E∗ (𝑤) with
respect to its weights,𝑤 and the set of demonstration trajectories Ẽ𝑖 (see section 3 for definition of notation).

2.3 Application of MinSub IOC

This technique has been applied on two tasks, a cursor pointing task [7] and a fairness task [12]. On the cursor pointing
task, it achieves superhuman performance on 78% of the samples. In [12], the authors frame fair machine learning
as an imitation learning task. By leveraging subdominance minimization (Ziebart et al., 2022) and policy gradient
optimization methods (Sutton and Barto, 2018), they are able to achieve superhuman performance in 100% of the tasks.

But the superhuman imitation learning method has not been applied on a real world task that is filled with com-
plex interconnections of features. The authors mentioned that they plan to explore more complex tasks in the future, but
they have not done that yet. We test the viability of this approach on a complex real world task: autonomous driving.

2.4 Gradual Data Augmentation for Low-resource Setting

Gradual fine-tuning [15], originally introduced in the realm of Natural Language Processing (NLP), advocates for a
multi-stage adaptation of models, yielding substantial improvements without altering the model or learning objective.
Drawing parallels to this approach, our project implements a concept of gradual data augmentation in the context of
bipedal walking. We iteratively integrate the newly refined model into our dataset. If it is good, it will get chosen as one
of the support vectors in the subsequent iterations, otherwise, it will be discarded. This process, similar to [15], allows
for progressive learning and improvement in a low-resource setting, enabling us to maximize the performance of our
bipedal walking model.

3 PROPOSED METHOD

Problem formulation:We want to test [7] in a more complex and realistic task like driving where the applications
will have more realistic real-life impact and the method will be validated for more complicated tasks.

Problem Setup:

• Defining the state action pairs At a particular timestep t, the Markov Decision Process is defined as:
M = (S,A,T ,R), where the State, 𝑆 includes set of observations about the environment 𝑂𝑡 from the Carla
sensors: GNSS, Depth Camera, IMU, Lane invasion detector, LIDAR, radar sensor and Object detector. The
actions for a particular timestep t, are defined as a_t which include: steering angle, throttle, and brake values.
A demonstrator produces trajectories, 𝜉 = (𝑠1,&𝑡𝑖𝑙𝑑𝑒𝑎1, . . . , 𝑎𝑇−1, 𝑠𝑇 ), of states, 𝑠𝑡 ∈ S, and actions, 𝑎𝑡 ∈ A,
according to the demonstrator’s policy, 𝜋 . There are K state-action features, f : S × A → R𝐾

>0

)
• Expert demonstrations: Our expert demonstrations include state action pairs by humans and [8] pre-trained

models by CARLA team. 𝐷 = {𝑑1, 𝑑2, ...𝑑𝑛} and for each 𝑑1 we have sequence of state-action pairs (s_t, a_t).
• Feature Extractor: We will be using a pre-trained encoder-only transformer-based model that will take in the

observations and produce complex features/embeddings that captures the temporal relationships.
• Learning the reward function: We learn the reward function from the minimal subdominance inverse optimal

control training function [7]. We define the reward function as a neural network that takes in a feature and
action a_t and outputs the scalar reward.

4
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• Reinforcement Learning: We train the model using reinforcement learning to maximise the sum of rewards
by updating the policy that maps the state to action.

• Evaluation: We evaluate the model in different settings such as rainy, dirt and in unseen paths and compare
the performance to humans.

• Iterative data augmentation: We do iterative data augmentation with MS IOC to mitigate the requirement of
large amounts of gold standard trajectories. We will start will novice demonstrations and train a set of RL models
based on steps 3-6. We then make these the expert demonstrations and continue but with a slight change of
including the output model from iteration 1 to be included in the demonstrations. The final set of models should
achieve similar performance or surpass the model that used state-action pairs from expert demonstrations.

Fig. 2. Our Problem setup. Our iterative method to gradually augment the data contains the SH module, or the superhuman algorithm
at the center (green box). We iteratively provide it the input data (either individual trajectories or models) and add the superhuman
model to the dataset. We also do ablation studies where we choose to only provide access of a subset of the features to the superhuman
algorithm.

5
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Algorithm 1 Inverse Optimal Control for 3 dimensional task
1: Step 1: Use the trained model from [13] as the initial optimal behavior for our problem. The weights of this model

were released to be used for autonomous driving research. These weights will be used as our cost weights𝑤 .
2: Step 2: Find support vectors given the value of alpha and demonstrations: Ξ̃SV𝑘

(w, 𝛼𝑘 ) given 𝜉∗

3: Step 3: The Hinge slope 𝛼 and cost weights𝑤 will be updated exactly as described in [7].
We optimize each 𝛼𝑘 using stochastic exponentiated gradient descent where the 𝛼𝑘 is regularized:

𝛼𝑘 ← 𝛼𝑘𝑒
𝜂𝑡

(
𝑓𝑘 (𝜉 )−𝑓𝑘 (𝜉∗ )−𝜆𝛼𝑘

)
using an appropriately decaying learning rate 𝜂𝑡 .
We employ a similar exponentiated subgradient update for cost weights𝑤 :

w← w ⊙ exp
(
−𝜂𝑡 𝜕w subdom𝑘𝛼𝑘 ,1

(
𝜉∗ (w), 𝜉

))

Algorithm 2 IOC for low resource setting
1: Step 1: Train different sub-optimal functions with different optimizations. No model should be good in all the

action space. These weights will be used as our cost weights𝑤 . Let us call this pool of models 𝛿 .
2: Step 2: Find support vectors given the value of alpha and demonstrations: Ξ̃SV𝑘

(w, 𝛼𝑘 ) given 𝜉∗

3: Step 3: The Hinge slope 𝛼 and cost weights𝑤 will be updated exactly as described in [7].
We optimize each 𝛼𝑘 using stochastic exponentiated gradient descent where the 𝛼𝑘 is regularized:

𝛼𝑘 ← 𝛼𝑘𝑒
𝜂𝑡

(
𝑓𝑘 (𝜉 )−𝑓𝑘 (𝜉∗ )−𝜆𝛼𝑘

)
using an appropriately decaying learning rate 𝜂𝑡 .
We employ a similar exponentiated subgradient update for cost weights𝑤 :

w← w ⊙ exp
(
−𝜂𝑡 𝜕w subdom𝑘𝛼𝑘 ,1

(
𝜉∗ (w), 𝜉

))
4: Step 4: The final output model from superhuman will be added to the pool of models 𝛿 . Then repeat the superhuman

learning loop till the model converges to optimal reward.

4 RESULTS

4.1 Effect of Changing Reward Function

We show the effect of changing the rward function weights. In each case, we train the model to convergence using the
PPO method.

6
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Fig. 3. We provide the model with the default reward weights given by the box2D-py library. The model never falls, reaches the end
of the map, and moves while conserving its energy.

4.1.1 Great Reward Function.

Fig. 4. We provide the model with the default reward weights given by the box2D-py library, but invert the motor reward weight. The
model never falls, reaches the end of the map, but wastes its energy while moving, flourishing its legs with each step.

4.1.2 Inverted Motor Reward Weight.

Fig. 5. We provide the model with the default reward weights given by the box2D-py library, but remove the fall reward weight. The
model always falls, but still moves forward, and moves while conserving energy.

4.1.3 No Fall Penalty.
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4.2 Superhuman Imitation Learning without Gradual data augmentation

Fig. 6. In a single run with the same trajectories used for the data, we run multiple iterations and plot the varying performance for
(from left to right) position, motor, fall, and the sum of the three feature rewards, respectively.

4.3 Superhuman Imitation Learning with Gradual Data Augmentation

Fig. 7. We apply gradual data augmentation to help with our low resource environment. We run multiple iterations and plot the
varying performance for (from left to right) position, motor, fall, and the sum of the three feature rewards, respectively.

4.4 Ablation Studies

We conduct ablation studies to understand the effect of different features on superhuman behavior. We selectively
remove features and see the fluctuation on rewards obtained.

Another experiment we run is that during step 2 of our algorithm where we choose support vectors, we for each of
our experiments choose 1) model weights as the demonstrations to choose support vectors from and 2) the trajectories of

8
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the models as our demonstrations. For this, we see a smoother convergence for trajectories but overall the improvement
was not huge and the model still fluctuated a lot. The smoother convergence makes sense as when we choose trajectories
of the models our database increases exponentially giving the model more data points to choose from.

To perform this study we run the following experiments:

Fig. 8. We remove the fall parameter. In a single run with the same trajectories used for the data, we run multiple iterations and plot
the varying performance for position, motor, fall, and the sum of the three feature rewards, respectively.

4.4.1 Removing the fall parameter.

Fig. 9. We remove the position parameter. In a single run with the same trajectories used for the data, we run multiple iterations and
plot the varying performance for position, motor, fall, and the sum of the three feature rewards, respectively.

4.4.2 Removing the position parameter.
9
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features iterative result
fall + motor no Slow convergence and takes a

long time
fall + motor yes same as no iterative but

has smoother convergence
although both fluctuate and fall
starves motor of good support
vectors

fall + motor + position no Better convergence and better
allocation Added some tricks to
only allow 10% of support vec-
tors to be chosen for any feature
but Fall is still troublesome

fall + motor + position yes same as above and achieves
higher rewards after 5 iterations

motor + position no The problem of fall starving is
gone and it achieves the most
reward of 297

4.5 Using deterministic TD3 instead of PPO

With limited time we could not run the TD3 till convergence since just 3 iterations took 5 hours. While we did not run
it fully we saw a consistent increase in rewards across different runs and a more linear increase in individual feature
rewards. This shows that our implementation of superhuman algorithm is correct. Reward: Iteration 1: fall -100.0 motor
-0.1030901416015625 position 27.93383742160156 different_reward

Iteration 2: fall 0.0 motor -0.07880137240409851 position -84.6798233875959 different_reward
Iteration 3: fall 0.12 motor -0.0928503 position 12.6798233875959 different_reward

5 CONTRIBUTIONS

• Superhuman paper: The superhuman paper has only been used for a very simple task i.e. the cursor-pointing
task. This task has no obstacles or a nonlinear space. We are applying the superhuman method to a more
complex task i.e. bipedal walker. This shows a flaw in the superhuman method while scaling to a more complex
environment and in a low-resource setting.

• We have done an extensive ablation study on the effects of features and choosing models vs trajectories in the
step 2 of the superhuman algorithm. We see a better convergence for trajectories as database.

• Learning superhuman behavior even with novice demonstrations: Using the iterative learning setup in our
proposed method we want to reach superhuman behavior that can challenge the best demonstrations only
using the novice demonstrations. This will make for a realistic setting and make it more applicable to practical
usage where expert demonstrations are not always present.

10
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6 CHALLENGES & FUTUREWORK

• The OpenAI gym library was not customizable enough on its own to implement this algorithm. So we had to
modify the library.

• The algorithm has a high time complexity and is not very scalable. It is difficult to perform parameter tuning. It
takes 2 hours for just 1 iteration with low data and just 200000 episodes which is not enough for convergence.

• We used the PPO method, which gave models with highly varied model performance with each run even with
the same initial reward function.

For future work we plan to apply it on a use-case with real-world utility, like driving. Granted more powerful GPUs
we would like to run the model till convergence as we belive that we will see the full power of superhuman behavior
when we run it for 100 iterations and the iterative data augmentation for 10 iterations. This would require 4 40GB A100
to run.
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